상단으로 이동
상단으로 이동
회원리뷰[0)]

분철무료 / 신경망 교과서

저자 | 제임스 로이 출판사 | 길벗
ISBN : 9791165211639   |  발행일 : 2020-05-28  |  292
  • 정가 24,000원
    판매가 21,600 (10% 할인)
  • 적립포인트 1,200 적립 [5% 적립]
  • 무이자할부 1월 무이자 할부
    배송비 무료배송 (20,000원 이상 구매시 배송비 무료)
  • 스프링분철
IT/베스트셀러 > 컴퓨터/IT도서


도서소개

프로젝트를 만들면서 배우는 신경망
주제별로 여섯 가지 신경망 프로젝트를 준비했다. 프로젝트는 실제 프로세스를 경험해 볼 수 있도록 문제 정의, 데이터 전처리, 모델 만들기, 결과 분석, 마무리, 복습 순서로 진행한다. 과정 안에는 특정 신경망 아키텍처를 이해하는 데 필요한 지식, 진행 시 발생할 수 있는 오류, 오류를 해결하는 방법도 함께 담았다.

- 당뇨 발병 여부 예측: 다중 레이어 퍼셉트론
- 택시 요금 예측: 특징 공학, 변수 스케일링, 심층 전방향 신경망
- 이미지 분류 모델: CNN, 전이 학습
- 이미지 노이즈 제거: 기본/심층 컨볼루션 오토인코더
- 영화 리뷰 감성 분석: 단어 임베딩, RNN, LSTM
- 안면 인식 시스템: 원샷 학습, 샴 신경망

개념 이해와 파이썬 라이브러리 사용법까지
각 장에서는 프로젝트를 만들기에 앞서 실습에 필요한 핵심 개념과 지식을 간결하게 정리하였으며, 그림도 풍부하게 사용해 이해를 높였다. 즉, 실습에 필요한 이론적 토대를 쌓고, 사용할 알고리즘과 모델 아키텍처를 숙지한 뒤에 직접 신경망을 만들어 볼 것이다.
신경망을 만들 때는 파이썬 코드를 한 줄씩 차근차근 최대한 쉽게 설명하려 노력했다. 또한, 꼭 알아두어야 하는 파이썬 라이브러리인 케라스, 맷플롯립, 판다스, 넘파이, 시본, 사이킷런 등도 사용해 본다.

도서목차

1장 머신 러닝과 신경망 개론
__1.1 머신 러닝이란?
____1.1.1 머신 러닝 알고리즘
____1.1.2 머신 러닝 워크플로
__1.2 머신 러닝 환경 셋업
__1.3 신경망
____1.3.1 신경망이 뛰어난 이유
____1.3.2 신경망 기본 아키텍처
____1.3.3 파이썬만으로 신경망 만들기
____1.3.4 딥러닝과 신경망
__1.4 판다스: 파이썬 데이터 분석 도구
____1.4.1 판다스 DataFrame
____1.4.2 판다스를 활용한 데이터 시각화
____1.4.3 판다스를 활용한 데이터 전처리
__1.5 텐서플로와 케라스
____1.5.1 케라스의 기본 빌딩 블록
____1.5.2 케라스로 신경망 만들기
__1.6 기타 파이썬 라이브러리
__1.7 마무리

2장 다중 레이어 퍼셉트론을 사용한 당뇨 예측
__2.1 실습 환경 설정
__2.2 당뇨병 예측
__2.3 의료 분야의 인공 지능
____2.3.1 진단 자동화
__2.4 당뇨병 데이터셋
__2.5 탐색적 데이터 분석
__2.6 데이터 전처리
____2.6.1 결측값 처리
____2.6.2 데이터 표준화
____2.6.3 데이터셋 분할
__2.7 다중 레이어 퍼셉트론
____2.7.1 모델 아키텍처
__2.8 케라스 모델 만들기
____2.8.1 모델 구성
____2.8.2 모델 컴파일
____2.8.3 모델 훈련
__2.9 결과 분석
____2.9.1 테스트 정확도
____2.9.2 혼동 행렬
____2.9.3 ROC 곡선
____2.9.4 모델 개선
__2.10 마무리
__2.11 복습

3장 심층 전방향 신경망을 사용한 택시 요금 예측
__3.1 실습 환경 설정
__3.2 뉴욕시 택시 요금 예측
__3.3 뉴욕시 택시 요금 데이터셋
__3.4 탐색적 데이터 분석
____3.4.1 위치 데이터 시각화
____3.4.2 요일 및 시간별 승차 통계
__3.5 데이터 전처리
____3.5.1 결측값 및 이상치 처리
__3.6 특징 공학
____3.6.1 시간 관련 변수
____3.6.2 위치 특징 변수
__3.7 변수 스케일링
__3.8 심층 전방향 신경망
____3.8.1 모델 아키텍처
____3.8.2 회귀 손실 함수
__3.9 케라스로 모델 만들기
__3.10 결과 분석
__3.11 예제 코드 정리
__3.12 마무리
__3.13 복습

4장 컨볼루션 신경망을 사용한 이미지 분류
__4.1 실습 환경 설정
__4.2 컴퓨터 비전과 사물 인식
__4.3 사물 인식 기술 유형
__4.4 신경망에 이미지를 입력하는 방법
__4.5 CNN의 빌딩 블록
____4.5.1 필터링과 컨볼루션
____4.5.2 최대 풀링
__4.6 CNN의 기본 아키텍처
__4.7 최신 CNN 아키텍처
____4.7.1 LeNet(1998)
____4.7.2 AlexNet(2012)
____4.7.3 VGG16(2014)
____4.7.4 Inception(2014)
____4.7.5 ResNet(2015)
____4.7.6 CNN의 미래
__4.8 고양이 개 이미지 데이터셋
__4.9 케라스로 이미지 데이터를 다루는 방법
__4.10 이미지 증강
__4.11 모델 구성
____4.11.1 기본 CNN
____4.11.2 전이 학습
__4.12 결과 분석
__4.13 마무리
__4.14 복습

5장 오토인코더를 사용한 이미지 노이즈 제거
__5.1 실습 환경 설정
__5.2 오토인코더
__5.3 잠재 표현
__5.4 오토인코더를 사용한 데이터 압축
__5.5 MNIST 데이터셋
__5.6 기본 오토인코더
____5.6.1 케라스로 오토인코더 만들기
____5.6.2 은닉 레이어 크기가 오토인코더 성능에 미치는 영향
__5.7 오토인코더를 사용한 노이즈 제거
____5.7.1 심층 컨볼루션 오토인코더를 사용한 노이즈 제거
__5.8 오토인코더를 사용한 문서 노이즈 제거
____5.8.1 기본 컨볼루션 오토인코더
____5.8.2 심층 컨볼루션 오토인코더
__5.9 마무리
__5.10 복습

6장 LSTM을 사용한 영화 리뷰 감성 분석
__6.1 실습 환경 설정
__6.2 시퀀스 문제
__6.3 자연어 처리와 감성 분석
____6.3.1 감성 분석이 어려운 이유
__6.4 RNN 신경망
____6.4.1 RNN의 내부 구조
____6.4.2 RNN의 단기 의존성과 장기 의존성
____6.4.3 경사 소실 문제
__6.5 LSTM 신경망
____6.5.1 LSTM의 원리
____6.5.2 LSTM 신경망의 내부
__6.6 IMDb 영화 리뷰 데이터셋
__6.7 단어의 벡터 표현
____6.7.1 원핫 인코딩
____6.7.2 단어 임베딩
__6.8 모델 아키텍처
____6.8.1 입력
____6.8.2 단어 임베딩 레이어
____6.8.3 LSTM 레이어
____6.8.4 밀집 레이어
____6.8.5 출력
__6.9 모델 구성
____6.9.1 데이터 입수
____6.9.2 제로 패딩
____6.9.3 단어 임베딩 레이어와 LSTM 레이어
____6.9.4 모델 컴파일 및 훈련
__6.10 결과 분석
____6.10.1 혼동 행렬
__6.11 예제 코드 정리
__6.12 마무리
__6.13 복습

7장 샴 신경망을 사용한 안면 인식
__7.1 실습 환경 설정
__7.2 안면 인식 시스템
__7.3 얼굴 검출과 얼굴 인식
____7.3.1 얼굴 검출
____7.3.2 얼굴 인식
__7.4 얼굴 인식 시스템 요구 사항
____7.4.1 속도
____7.4.2 확장성
____7.4.3 적은 데이터로 높은 정확도 보장
__7.5 원샷 학습
____7.5.1 벡터 간 유클리드 거리
__7.6 샴 신경망
__7.7 대조 손실
__7.8 얼굴 데이터셋
__7.9 케라스 샴 신경망
__7.10 모델 훈련
__7.11 결과 분석
__7.12 예제 코드 정리
__7.13 실시간 안면 인식 프로그램
____7.13.1 온보딩 과정
____7.13.2 얼굴 인식 및 인증
____7.13.3 안면 인식 고도화
__7.14 마무리
__7.15 복습

8장 신경망과 인공 지능의 미래
__8.1 요약
____8.1.1 머신 러닝과 신경망 개론
____8.1.2 다중 레이어 퍼셉트론을 사용한 당뇨 예측
____8.1.3 심층 전방향 신경망을 사용한 택시 요금 예측
____8.1.4 컨볼루션 신경망을 사용한 이미지 분류
____8.1.5 오토인코더를 사용한 이미지 노이즈 제거
____8.1.6 LSTM을 사용한 영화 리뷰 감성 분석
____8.1.7 샴 신경망을 사용한 안면 인식
__8.2 최신 신경망 기술
____8.2.1 GAN 신경망
____8.2.2 심층 강화 학습
__8.3 신경망의 한계
__8.4 인공 지능과 머신 러닝의 미래
____8.4.1 범용 인공 지능
____8.4.2 머신 러닝 자동화
__8.5 머신 러닝의 최신 기술을 습득하려면
____8.5.1 기술 서적
____8.5.2 연구 논문
____8.5.3 데이터셋을 다루는 연습
__8.6 머신 러닝 도구
__8.7 마무리

찾아보기

해시태그

#분철무료 #신경망 #교과서

도서 리뷰작성!

평점
답변상태 문의답변 작성자 작성일

도서 문의작성!

배송 - 월요일~토요일 오전9시 이전에 입금 확인 된 주문은 다음날 배송받으실 수 있습니다.
- 토요일 발송분은 오전9시 이전 주문에 한하여 월요일 수령 가능 합니다.
(일부 제작상품 및 재고부족 도서 제외)
- 재고가 부족한 일부 상품의 경우 1~3일 정도 배송이 지연될 수 있습니다.
교환/반품 방법 1:1 문의 글 등록, 고객만족센터 (1544-1356) 전화 후 교환/반품 문의하시면 됩니다.
교환/반품 가능기간 출고 완료 후 7일 이내에 교환/반품/환불이 가능합니다.
교환/반품 비용 고객님 변심에 의한 반품, 환불, 교환 시 택배비는 본인 부담입니다.
교환/반품 불가사유 - 상담원과의 상담 없이 교환 및 반품으로 반송된 물품은 책임지지 않습니다.
- 상품이 훼손된 경우 반품 및 교환, 환불이 불가합니다.
- 고객님 귀책사유로 인해 수거가 지연될 경우에는 반품이 제한됩니다.
서브노트, 스프링 분철 교재 등은 교환이나 반품이 불가합니다.
상품 품절 공급사(출판사) 재고 사정에 의해 품절/지연될 수 있으며, 품절 시 관련 사항에 대해서는 이메일과 문자로
안내해드리겠습니다.
소비자 피해보상
환불지연에 따른 배상
- 상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에
관한 사항은 소비자분쟁해결 기준 (공정거래위원회고시)에 준하여 처리됨
- 대금환불 및 환불지연에 따른 배상금 지급 조건, 절차등은 전자상거래 등에서의
소비자 보호에 관한 법률에 따라 처리됨